Humidity Control

How is humidity controlled with an AC system?



Humidity is becoming more of a concern to building operators and owners. High indoor humidity leads to mold and mildew growth inside the building. The are several methods of controlling indoor humidity. The simplest (and most expensive) method is to connect a humidistat to an electric heater. When the humidity inside the building rises above the humidistat set point, the heater is turned on. The additional heat causes the air conditioning system to run longer and remove more moisture.

A more efficient method of controlling humidity is to use the waste heat from the refrigeration cycle itself. Instead of rejecting the waste heat outdoors, the heat is directed inside when humidity control is required. One form of heat reclaim is called hot-gas reheat or “refrigerant desuperheating” where refrigerant is passed through a heat exchanger located downstream of the cooling coil. The hot high pressure vapor leaving the compressor passes through this heat exchanger prior to entering the condenser coil. This in turn heats the indoor air and again causes the AC system to run longer to meet the thermostat set point. Although more energy is used, this is much more efficient than turning on an electric heater. Another form of heat reclaim is called sub-cool reheat. This strategy takes the warm liquid refrigerant from the condenser and passes it through a heat exchanger located downstream of the cooling coil. Less heat is available using this method because the majority of the heat has already been rejected at the condenser. Since more energy is used to pump liquid (as opposed to a gas) through the heat exchanger it would appear that this method is less efficient than the hot-gas method, however, the liquid in the heat exchanger is sub-cooled in the cold supply air stream which increases the capacity of the air conditioner. Since more capacity is available, the AC units is able to meet the thermostat more quickly.

Heat pipe heat exchangers or run-around coils perform a similar function when humidity control is required. Two heat exchanger are placed in the air stream, one upstream of the cooling coil and the other downstream of the cooling coil. These heat exchangers are connected together with piping. A heat transfer fluid, whether it be water or refrigerant, is either pumped or gravity fed from one heat exchanger to the other. The heat exchanger down stream of the cooling coil (re-heat coil) cools the liquid medium inside the heat exchanger and heats the air passing over the heat exchanger. The cold liquid inside the heat exchanger is moved to the heat exchanger upstream of the cooling coil (pre-cool coil) where it pre-cools the air passing over the heat exchanger and warms the liquid passing through the heat exchanger. The affect of a heat pipe or run-around coil is to reduce the sensible heat capacity of the AC system. The latent capacity of the AC system increases if direct-expansion equipment is used or remains relatively constant if chilled water equipment is used. Since the sensible capacity of the AC system has been reduced, the system must run longer to meet the thermostat set point thereby removing more moisture.

0 Comments